Existence and Regularity for a Curvature Dependent Variational Problem
نویسنده
چکیده
It is proved that smooth closed curves of given length minimizing the principal eigenvalue of the Schrödinger operator − d 2 ds + κ exist. Here s denotes the arclength and κ the curvature. These minimizers are automatically planar, analytic, convex curves. The straight segment, traversed back and forth, is the only possible exception that becomes admissible in a more generalized setting. In proving this, we overcome the difficulty from a lack of coercivity and compactness by a combination of methods.
منابع مشابه
Bifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملPartitions with Prescribed Mean Curvatures
We consider a certain variational problem on Caccioppoli partitions with countably many components, which models immiscible fluids as well as variational image segmentation, and generalizes the well-known problem with prescribed mean curvature. We prove existence and regularity results, and finally show some explicit examples of minimizers. Introduction In this paper we consider a variational p...
متن کاملFree and constrained equilibrium states in a variational problem on a surface
We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...
متن کاملMean curvature flow with obstacles
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012